Positive Solutions for a Class of p-Laplacian Systems with Sign-Changing Weight

نویسندگان

  • G. A. Afrouzi
  • M. Alizadeh
چکیده

We consider the system ⎧ ⎨ ⎩ −Δ p u = λF (x, u, v), x ∈ Ω, −Δ q v = λH(x, u, v), x ∈ Ω, u = 0 = v, x ∈ ∂Ω, where F (x, u, v) = [g(x)a(u) + f (v)], H(x, u, v) = [g(x)b(v) + h(u)], Ω is a bounded domain in R N (N ≥ 1) with smooth boundary ∂Ω, λ is a real positive parameter and Δ s z = div (|∇z| s−2 ∇z), s > 1, (s = p, q) is a s-laplacian operator. Here g is a C 1 sign-changing function that may be negative near the boundary and f, h, a, b are C 1 nondecreasing functions satisfying a(0) ≥ 0, b(0) ≥ 0, lim x→∞ a(x) x p−1 = 0, lim x→∞ b(x) x q−1 = 0, lim x→∞ f (x) = ∞, lim x→∞ h(x) = ∞, and lim x→∞ f (M [h(x)] 1 q−1) x p−1 = 0, ∀M > 0, by applying the method of sub-super solutions the existence of a positive solution is established for the above system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiplicity of Positive Solutions of laplacian systems with sign-changing weight functions

In this paper, we study the multiplicity of positive solutions for the Laplacian systems with sign-changing weight functions. Using the decomposition of the Nehari manifold, we prove that an elliptic system has at least two positive solutions.

متن کامل

Existence and multiplicity of nontrivial solutions for‎ ‎$p$-Laplacian system with nonlinearities of concave-convex type and‎ ‎sign-changing weight functions

This paper is concerned with the existence of multiple positive‎ ‎solutions for a quasilinear elliptic system involving concave-convex‎ ‎nonlinearities‎ ‎and sign-changing weight functions‎. ‎With the help of the Nehari manifold and Palais-Smale condition‎, ‎we prove that the system has at least two nontrivial positive‎ ‎solutions‎, ‎when the pair of parameters $(lambda,mu)$ belongs to a c...

متن کامل

Multiplicity of Positive Solution of p-Laplacian Problems with Sign-Changing Weight Functions

In this paper, we study the multiplicity of positive solutions for the p-Laplacian problems with sign-changing weight functions. Using the decomposition of the Nehari manifold, we prove that an elliptic equation has at least two positive solutions.

متن کامل

Multiplicity of solutions for p-Laplacian equation in R with indefinite weight

In this article, we study the existence of infinitely many nontrivial solutions for a class of superlinear p-Laplacian equations −∆pu+ V (x)|u| p−2 u = f(x, u), where the primitive of the nonlinearity f is of subcritical growth near ∞ in u and the weight function V is allowed to be sign-changing. Our results extend the recent results of Zhang and Xu [Q. Y. Zhang, B. Xu, Multiplicity of solution...

متن کامل

Infinitely many solutions for a bi-nonlocal‎ ‎equation with sign-changing weight functions

In this paper, we investigate the existence of infinitely many solutions for a bi-nonlocal equation with sign-changing weight functions. We use some natural constraints and the Ljusternik-Schnirelman critical point theory on C1-manifolds, to prove our main results.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007